Ток сродни потоку в воде.

Есть несколько видов тока. Нам нынче привычен ток постоянный и переменный. Есть ещё мнимый и статичный. Для каждого из них есть своя среда и свои приборы.

Ток сродни потоку в воде. Вода — среда, поток — ток. У реки есть исток и устье, а так же русло и протоки. Динамика определяется принципом физики среды, принцип же схож, разве что перекладывается на физику среды.

Проще говоря для реки это берега, вода, водяное колесо, пороги, протоки, русла.

Воздух тоже обладает схожими динамическими параметрами, только там иная физика и иные приборы, хотя принципы те же.

Есть и иные среды. В иных средах иные параметры, иные пограничные условия, иные статические и динамические характеристики.

Например, самоподдерживающийся вихрь. Для воды это воронка, для воздуха торнадо, для агния это шаровая молния. Причём мы видим их внутреннее движение, хотя сама по себе их цепь замкнута сама на себя, как цепь электрическая с батарейкой и лампочкой.

Статистор вакуумный требует достаточно высокого напряжения или инертной газовой среды. Вакуум всё же полупроводник и имеет соответствующие ключевые свойства, только в кремнии этот порог всего вольты, а у вакуума сотни вольт, порог проводимости.

Вот стакан с водой, вы его наполняете, пока не переполните край и тогда вода начнёт вытекать и за счёт вязкости потянет из стакана воду за собой, вода начнёт перетекать из стакана наружу. Если вязкости не хватает, можно использовать трубку, по которой вода вытечет из стакана через край. Это и есть порог.

Статисторы так же реализуются как 3-х обкладочные конденсаторы. На них так же можно сделать плечевые мультивибраторы.

Но халявы тут нет. Просто иной тип электричества, не более. Современная техника заточена на постоянный ток и переменный, используемый в основном как промежуточный для постоянного. Мнимый и статический принято считать паразитным эффектом и с ними бороться, как с той же фазой в розетке, что кусается.

В принципе можно намотать конденсатор, тройные даже продаются. Накачать колбу тем же аргоном. Проблема не в этом, нет под это дело нынче ни годной практической базы экспериментов, ни теории сносной, ни элементной базы и что важнее — потребителей. Как вы будете пользоваться неоновым светом супротив современных led?

Хотя, конечно, каждый вид тока имеет не только недостатки, но и преимущества. Переменный неплохо передаётся, постоянный — хранится. Статический — добывается, мнимый и вовсе просачивается хуже керосина.

Однако статика требует немалых размеров приборов, мнимый — сверх аккуратности.

Уголь обладает высокой пористостью, а значит площадью поверхности, а значит ёмкостью. Аккумулятор из пары электродов, обмотанных мешковиной с углём, опущенных в бочку/банку с раствором собирается в полевых условиях.

Напряжение для статисторов сотни вольт, достаточно для применения в дуговой аппаратуре, не сверх напряжения.

Вихревой источник не халява, с другой стороны торнадо, воронка в воде, вихрь в воздухе между обкладками вполне работают генераторами. Система не сложная, реализуемая хоть в параметрах башни, хоть банки, хоть стакана.

Помните шумиху с холодным термоядерным синтезом, который не смогли повторить другие лаборатории?

Получить эффект случайно и повторить оный не одно и тоже.

«О, лучшие научные кадры занимались «сверхпроводящими» электромагнитами с внешними источниками тока. Пришлось решать грандиозную задачу: поддерживать веру в то, что здесь в соленоиде электроны движутся в сверхпроводящем режиме, хотя по токоподводам они движутся в режиме обычной проводимости. Между тем, имелось немало свидетельств о том, что, при внешнем источнике тока, в соленоиде течёт только обычный ток проводимости. Ну, например – подаёте вы напряжение на соленоид, который ещё не охлаждён ниже критической температуры. При этом, бесспорно, сверхпроводимости ещё нет. А вы соленоид охлаждаете, охлаждаете – и вот его температура становится субкритической. Омическое сопротивление соленоида, якобы, должно скачком обратиться в нуль. Значит, сопротивление всей цепи должно скачком уменьшиться, а ток в этой цепи, соответственно, скачком увеличиться. Так вот: никто о таких скачках не сообщал. У короткозамкнутых соленоидов скачкообразные переходы наблюдались, а у соленоидов с внешним источником тока – нет. С чего же вы, дяденьки, брали, что здесь происходил переход в сверхпроводящий режим? С того, что этот переход теория предсказывала? А на практике он – где? Вы ещё скажите, что этот наш «отдельный пример ничего не доказывает». Да неужели этот пример – отдельный? Да неужели он – не доказывает? А вы, случайно, не из тех, которым можно что-то доказать, лишь прищемив кой-чего? Ну, ладно, вот второй пример. В случае схемы с внешним источником тока, имеется счастливая возможность измерять силу тока в цепи. А, зная геометрию соленоида, можно рассчитать напряженность магнитного «поля», которое должен генерировать соленоид при прохождении через него такого-то тока проводимости. Оказывается, что в режиме «сверхпроводимости» соленоид генерирует «поле», которое, практически, совпадает с рассчитанным через геометрию. Не означает ли это, дяденьки, что через соленоид на самом деле течёт обычный ток проводимости? Или вам и второго примера мало? Ладно, на третий вы сами напросились. Перейдя к схемам «сверхпроводящих» соленоидов с внешним источником тока, исследователи столкнулись с доселе неслыханным грозным явлением. Если прозевать момент и допустить, что ток через соленоид станет больше некоторой критической величины, то соленоид… сгорит к чёртовой матери. Этот феномен поначалу поверг лучшие научные кадры в шок. Ужас был не в том, что соленоиды сгорали. Ужасна была реальная угроза разоблачения дурилочки про сверхпроводимость – ведь сверхпроводник, с его нулевым омическим сопротивлением, по определению сгореть не может.»
Отсюда: http://newfiz.info/elvo-opus.htm
«Казус в том, что, для режима сверхнамагниченности, при субкритической температуре должна быть вся цепь, а не только её часть. Так-то вот. Хорошо уже то, что про экономию миллиардов киловатт-часов никто больше не заикается. Одни лишь главные отклоняющие магниты Большого адронного коллайдера (в количестве 1232 штук) имеют многожильные титан-ниобиевые «сверхпроводящие» обмотки с длиной чуть поболе километра на каждом магните. Разумеется, эти обмотки запитываются внешними источниками тока, габариты и технические характеристики которых – не для слабонервных. Моря киловатт-часов и гольфстримы жидкого гелия… Учитесь, студенты, грамотно разводить лохов на несметные деньги!»
«Ведь как гладко всё начиналось! Наматывали катушечку, а два конца этой обмотки соединяли друг с другом. Получался, что называется, короткозамкнутый соленоид. В условиях слабого затравочного магнитного поля охлаждали этот соленоид ниже критической температуры – и он скачком переходил в режим генерации сильного поля. Светясь от счастья, экспериментаторы показывали публике это короткозамкнутое чудо, в котором ток тёк годами без потерь. «Видите, — втолковывали публике, — источники тока теперь на фиг не нужны! Мы их всех повыкидываем на свалку! И съэкономим миллиарды киловатт-часов электроэнергии!» От таких речей публика проникалась глубочайшим уважением к науке. Откуда публике было знать, что поддержание соленоида при субкритической температуре требует производства хладагента, а это в итоге сжирает больше электроэнергии, чем поддержание в соленоиде обычного тока проводимости. «Давайте, орлы, — рукоплескала публика, — развивайте это стоящее дело!»
Да орлы и сами понимали, что это дело стоящее, и что его надо развивать. Хочется ведь большего! Чтобы получить более сильное магнитное «поле» и съэкономить больше киловатт-часов, нужно сделать что? Правильно, нужно увеличить число витков в соленоиде, а, значит, и длину его обмотки. Да нет проблем! Берём проволочку подлиннее, наматываем, кончики замыкаем, затравочное поле включаем, соленоид подмораживаем, и… и ничего не происходит. В нескольких лабораториях проверили – воспроизводимость стопроцентная. Физики оказались в положении детей, чья любимая игрушка растаяла в воздухе прямо на глазах. «Как это? – соображали физики. – Чё это она так? Почему это малые соленоиды переходят в режим генерации сильного поля – а большие, при той же температуре, не переходят? Материал ведь один и тот же!»»
«Давайте же восстановим если уж не историческую справедливость, так хотя бы историческую хронологию! Началось всё с опытов Каммерлинг-Оннеса, который исследовал электропроводность ртути при сверхнизких температурах. Делал он это топорно – замеряя гальванометрами напряжение на кусочке ртути и силу тока через него. При понижении температуры кусочка ртути примерно до 4оК, что-то там резко в нём менялось – было похоже на то, что его сопротивление скачком падало. Но насколько оно падало – точно установить не удавалось. Намучившись с этой топорной вознёй с гальванометрами, Каммерлинг-Оннес перешёл на более продвинутую методику. Он стал делать колечки из свинца и, как ему казалось, возбуждать в них, в сильно охлаждённых, кольцевой ток электронов. Он же читал Максвелла: «при изменении магнитного потока через замкнутый проводящий контур, в нём возникает э.д.с. индукции», и т.д. Ну, вот. Если изменяющееся магнитное «поле» прикладывалось к колечку при субкритической температуре, то происходило чудо, которое толковали как возникновение кольцевого тока электронов. Который, якобы, годами (!) не затухал – поддерживалась бы субкритическая температура. Опыты это подтверждали! Только, позвольте, как они могли подтверждать, что в колечке действительно годами циркулируют электроны? Амперметр же в это колечко не встраивали. Делали проще: о наличии тока электронов судили по магнитному действию колечка. Отклоняет колечко магнитную стрелочку – значит, ток электронов в колечке есть. Годами отклоняет – значит, годами ток электронов есть! Стоп, стоп. Постоянный магнит тоже годами отклоняет стрелочку, но токов электронов в нём нет. Может, дяденьки, вы нас разыгрываете, и те самые колечки – это тоже магниты? Оказывается, это было проверено – дело-то нехитрое. Сам же Каммерлинг-Оннес сплеча и срубил сук, на котором так уютно устроился. «Каммерлинг-Оннесу пришло в голову разрезать сверхпроводящее свинцовое кольцо… Казалось, что ток должен прекратиться; в действительности, однако, отклонение магнитной стрелки, регистрировавшей силу тока, при перерезке кольца нисколько не изменилось – так, как если бы кольцо представляло собой не проводник с током, а магнит». Это цитата из книжки Френкеля «Сверхпроводимость», вышедшей в 1936 году. Едва ли сейчас можно разыскать экземплярчик этой книги – добрые дяди изъяли все, до которых смогли дотянуться. Ибо эта книга содержит научную тайну чрезвычайной важности: в т.н. сверхпроводящем кольце никакого кольцевого движения электронов нет.»
«Тут внимательные читатели, конечно, заметят, что та прекрасная температура, при заходе под которую наступает сверхнамагниченность, является не характеристической величиной для конкретного материала, а зависит от размера образца – в частности, от его длины. Чем эта длина больше, тем сильнее придётся охлаждать образец, чтобы перевести его в состояние сверхнамагниченности. Неужели, мол, физики – такие идиоты, что этого не заметили? Эх, милые мои! Да кто ж вам сказал, что они этого не заметили? Ещё как заметили! Именно с этим и связана та ужасная драма, которая разыгралась в истории «сверхпроводящих» устройств!»
«Друзья, да жидкую воду не надо разлагать электричеством – она сама себя разлагает. Успевай только растаскивать продукты разложения на электроды – и будет полный ажур. Кто не верит – пусть попробует получить «электролиз» бензина при паре вольт. А мы посмеёмся. Потому что знаем, что здесь потребуется пробивное напряжение – этак, десятки киловольт. Только, дети, если вы надумаете проводить эти опыты, то имейте в виду, что вряд ли вы сделаете открытие – здесь авторское свидетельство уже выдано:
Школьник высокие вольты включил,
В чистом бензине пробой получил!
Долго за жизнь его бились врачи…
От школы остались одни кирпичи…»
«Впрочем, дорогой читатель, академикам и без этого досталось – когда их ткнули носом в биологические свойства талой воды. Вышло так: какие-то рядовые биологи в экспедициях чересчур впечатлились тем, что в воде вблизи тающих льдов жизнь кипит бурнее, чем обычно. Ну, и – опубликовались сдуру. Пришлось из-за них созывать конференции по «биологическому действию талой воды», выпускать сборники трудов… Даже вывод сделали: да, талая вода особо благоприятна для живых организмов, а чтобы узнать, почему это так – требуются дополнительные исследования. До сих пор эти дополнительные исследования требуются… А, можно, мы подскажем? При замерзании воды, пропадает её структурированность, в том числе и патогенная. А при оттаивании льда, талая вода является некоторое время «незамутнённой» в структурном смысле. Живые организмы, не упустите свой шанс! Кстати, едва ли не все бабушки знают, что в ночь на Крещение (на 19 января) жидкая природная вода приобретает особые, биологически благотворные, свойства.»

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *